При делении числителя обыкновенной дроби на знаменатель в некоторых случаях деление «не заканчивается». Говорят, что в частном получается бесконечная десятичная дробь. Дроби 0,6666… и 0,5454… — бесконечные, а десятичная дробь 0,8 — конечная.
Если знаменатель обыкновенной несократимой дроби содержит в разложении только произведение чисел «2» и «5» и их степеней, то такую дробь можно записать в виде конечной десятичной дроби, в противном случае — при делении числителя на знаменатель получится бесконечная периодическая десятичная дробь (см. видео).
Обратить обыкновенную дробь в десятичную можно одним из трех способов:
I. В ряду чисел 10; 100; 1000 и т. д. подобрать такое, которое делится на знаменатель обыкновенной дроби, и привести ее к этому знаменателю.
II. Знаменатель обыкновенной дроби разложить на простые множители и уравнять в нем количество двоек и пятерок.
III. Разделить числитель дроби на знаменатель по правилу деления десятичных дробей.
▪ Пример. Преобразовать обыкновенную дробь в десятичную различными способами.